2,342 research outputs found

    Abelian covers of surfaces and the homology of the level L mapping class group

    Full text link
    We calculate the first homology group of the mapping class group with coefficients in the first rational homology group of the universal abelian Z/LZ\Z / L \Z-cover of the surface. If the surface has one marked point, then the answer is \Q^{\tau(L)}, where τ(L)\tau(L) is the number of positive divisors of LL. If the surface instead has one boundary component, then the answer is \Q. We also perform the same calculation for the level LL subgroup of the mapping class group. Set HL=H1(ÎŁg;Z/LZ)H_L = H_1(\Sigma_g;\Z/L\Z). If the surface has one marked point, then the answer is \Q[H_L], the rational group ring of HLH_L. If the surface instead has one boundary component, then the answer is \Q.Comment: 32 pages, 10 figures; numerous corrections and simplifications; to appear in J. Topol. Ana

    Sufficient conditions for the existence of bound states in a central potential

    Full text link
    We show how a large class of sufficient conditions for the existence of bound states, in non-positive central potentials, can be constructed. These sufficient conditions yield upper limits on the critical value, gc(ℓ)g_{\rm{c}}^{(\ell)}, of the coupling constant (strength), gg, of the potential, V(r)=−gv(r)V(r)=-g v(r), for which a first ℓ\ell-wave bound state appears. These upper limits are significantly more stringent than hitherto known results.Comment: 7 page

    Necessary and sufficient conditions for existence of bound states in a central potential

    Full text link
    We obtain, using the Birman-Schwinger method, a series of necessary conditions for the existence of at least one bound state applicable to arbitrary central potentials in the context of nonrelativistic quantum mechanics. These conditions yield a monotonic series of lower limits on the "critical" value of the strength of the potential (for which a first bound state appears) which converges to the exact critical strength. We also obtain a sufficient condition for the existence of bound states in a central monotonic potential which yield an upper limit on the critical strength of the potential.Comment: 7 page

    Upper and lower limits on the number of bound states in a central potential

    Full text link
    In a recent paper new upper and lower limits were given, in the context of the Schr\"{o}dinger or Klein-Gordon equations, for the number N0N_{0} of S-wave bound states possessed by a monotonically nondecreasing central potential vanishing at infinity. In this paper these results are extended to the number NℓN_{\ell} of bound states for the ℓ\ell-th partial wave, and results are also obtained for potentials that are not monotonic and even somewhere positive. New results are also obtained for the case treated previously, including the remarkably neat \textit{lower} limit Nℓ≄{{[σ/(2ℓ+1)+1]/2}}N_{\ell}\geq \{\{[\sigma /(2\ell+1)+1]/2\}\} with V(r)∣1/2]% \sigma =(2/\pi) \underset{0\leq r<\infty}{\max}[r| V(r)| ^{1/2}] (valid in the Schr\"{o}dinger case, for a class of potentials that includes the monotonically nondecreasing ones), entailing the following \textit{lower} limit for the total number NN of bound states possessed by a monotonically nondecreasing central potential vanishing at infinity: N\geq \{\{(\sigma+1)/2\}\} {(\sigma+3)/2\} \}/2 (here the double braces denote of course the integer part).Comment: 44 pages, 5 figure

    Fisheye Consistency: Keeping Data in Synch in a Georeplicated World

    Get PDF
    Over the last thirty years, numerous consistency conditions for replicated data have been proposed and implemented. Popular examples of such conditions include linearizability (or atomicity), sequential consistency, causal consistency, and eventual consistency. These consistency conditions are usually defined independently from the computing entities (nodes) that manipulate the replicated data; i.e., they do not take into account how computing entities might be linked to one another, or geographically distributed. To address this lack, as a first contribution, this paper introduces the notion of proximity graph between computing nodes. If two nodes are connected in this graph, their operations must satisfy a strong consistency condition, while the operations invoked by other nodes are allowed to satisfy a weaker condition. The second contribution is the use of such a graph to provide a generic approach to the hybridization of data consistency conditions into the same system. We illustrate this approach on sequential consistency and causal consistency, and present a model in which all data operations are causally consistent, while operations by neighboring processes in the proximity graph are sequentially consistent. The third contribution of the paper is the design and the proof of a distributed algorithm based on this proximity graph, which combines sequential consistency and causal consistency (the resulting condition is called fisheye consistency). In doing so the paper not only extends the domain of consistency conditions, but provides a generic provably correct solution of direct relevance to modern georeplicated systems

    Abelian subgroups of Garside groups

    Full text link
    In this paper, we show that for every abelian subgroup HH of a Garside group, some conjugate g−1Hgg^{-1}Hg consists of ultra summit elements and the centralizer of HH is a finite index subgroup of the normalizer of HH. Combining with the results on translation numbers in Garside groups, we obtain an easy proof of the algebraic flat torus theorem for Garside groups and solve several algorithmic problems concerning abelian subgroups of Garside groups.Comment: This article replaces our earlier preprint "Stable super summit sets in Garside groups", arXiv:math.GT/060258

    On the negative spectrum of two-dimensional Schr\"odinger operators with radial potentials

    Full text link
    For a two-dimensional Schr\"odinger operator HαV=−Δ−αVH_{\alpha V}=-\Delta-\alpha V with the radial potential V(x)=F(∣x∣),F(r)≄0V(x)=F(|x|), F(r)\ge 0, we study the behavior of the number N−(HαV)N_-(H_{\alpha V}) of its negative eigenvalues, as the coupling parameter α\alpha tends to infinity. We obtain the necessary and sufficient conditions for the semi-classical growth N−(HαV)=O(α)N_-(H_{\alpha V})=O(\alpha) and for the validity of the Weyl asymptotic law.Comment: 13 page

    Entanglement entropy of fermions in any dimension and the Widom conjecture

    Full text link
    We show that entanglement entropy of free fermions scales faster then area law, as opposed to the scaling Ld−1L^{d-1} for the harmonic lattice, for example. We also suggest and provide evidence in support of an explicit formula for the entanglement entropy of free fermions in any dimension dd, S∌c(∂Γ,∂Ω)⋅Ld−1log⁥LS\sim c(\partial\Gamma,\partial\Omega)\cdot L^{d-1}\log L as the size of a subsystem L→∞L\to\infty, where ∂Γ\partial\Gamma is the Fermi surface and ∂Ω\partial\Omega is the boundary of the region in real space. The expression for the constant c(∂Γ,∂Ω)c(\partial\Gamma,\partial\Omega) is based on a conjecture due to H. Widom. We prove that a similar expression holds for the particle number fluctuations and use it to prove a two sided estimates on the entropy SS.Comment: Final versio

    The a priori Tan Theta Theorem for spectral subspaces

    Full text link
    Let A be a self-adjoint operator on a separable Hilbert space H. Assume that the spectrum of A consists of two disjoint components s_0 and s_1 such that the set s_0 lies in a finite gap of the set s_1. Let V be a bounded self-adjoint operator on H off-diagonal with respect to the partition spec(A)=s_0 \cup s_1. It is known that if ||V||<\sqrt{2}d, where d=\dist(s_0,s_1), then the perturbation V does not close the gaps between s_0 and s_1 and the spectrum of the perturbed operator L=A+V consists of two isolated components s'_0 and s'_1 grown from s_0 and s_1, respectively. Furthermore, it is known that if V satisfies the stronger bound ||V||< d then the following sharp norm estimate holds: ||E_L(s'_0)-E_A(s_0)|| \leq sin(arctan(||V||/d)), where E_A(s_0) and E_L(s'_0) are the spectral projections of A and L associated with the spectral sets s_0 and s'_0, respectively. In the present work we prove that this estimate remains valid and sharp also for d \leq ||V||< \sqrt{2}d, which completely settles the issue.Comment: v3: some typos fixed; Examples adde
    • 

    corecore